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Some ”Scary” Statistics: Traffic Fatalities

Figure : Road Fatalities per 100,000 inhabitants and year

In total (2010): USA (36,166), Canada (2,075), World (1.24 million!)
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Benefits of Autonomous Driving

1. Lower the risk of accidents
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Benefits of Autonomous Driving

1. Lower the risk of accidents

2. Provide mobility for the elderly and people with disabilities

I In the US 45% of people with disabilities still work

3. Decrease pollution for a more healthy environment

4. New ways of Public Transportation
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Boring life of a car

95% of the time a car is parked

Figure from http://theoatmeal.com/blog/google_self_driving_car
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Autonomous Driving

State of the art

Localization, path planning, obstacle avoidance

Heavy usage of Velodyne and detailed (recorded) maps

Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

Stereo, optical flow, visual odometry, structure-from-motion

Object detection, recognition and tracking

3D scene understanding
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What do we need?

Data: not anyone has an autonomous driving platform!

Holistic Models that can capture the complex dependencies between the
different tasks

Learning algorithms that are efficient and can learn good representations
that are useful for many tasks.

Efficient inference algorithms (realtime on CPU, GPU or other HW
accelerators)
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Collecting Big Data
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Benchmarks: KITTI Big Data Collection

Two stereo rigs (1392× 512 px, 54 cm base, 90◦ opening)

Velodyne laser scanner, GPS+IMU localization

6 hours at 10 frames per second → 3Tb
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The KITTI Vision Benchmark Suite

[A. Geiger, P. Lenz, R. Urtasun, In CVPR 2012]
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First Difficulty: Sensor Calibration

TGPS

TVelodyne

TC

TC

Camera calibration [Geiger et al., ICRA 2012]

Velodyne ↔ Camera registration

GPS+IMU ↔ Velodyne registration
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Second Difficulty: Object Annotation

3D object labels: Annotators (undergrad students from KIT working for
months)

Occlusion labels: Mechanical Turk
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Big Success!

[A. Geiger, P. Lenz, R. Urtasun, In CVPR 2012]

More than 500 submissions, 20,000 downloads since June 2012!
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Reconstructing the 3D World
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Stereo Estimation

Desired Properties:

Robust to saturation, shadows, repetitive patterns, specularities, etc

Good enough to detect obstacles precisely

Fast: current accurate techniques are too slow

Trainable with only a few images, i.e., 100
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Matching Networks: geometry-aware CNN

Current approaches use a
siamese network

Combine the two branches
via concatenation follow by
further processing

Too slow: 1 minute of
computation on the GPU for
KITTI!

We solve this problem by
learning features that
already capture the similarity

Uncertainty estimates by
building probability
distributions over all possible
solutions
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Quantitative Matching Results

[W. Luo, A. Schwing and R. Urtasun, In CVPR 2016]

> 2 pixel > 3 pixel > 4 pixel > 5 pixel End-Point Runtime(s)
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

MC-CNN-acrt 15.02 16.92 12.99 14.93 12.04 13.98 11.38 13.32 4.39 px 5.21 px 20.13
Ours(19) 10.87 12.86 8.61 10.64 7.62 9.65 7.00 9.03 3.31 px 4.2 px 0.14

Table : KITTI 2012 validation set.

> 2 pixel > 3 pixel > 4 pixel > 5 pixel End-Point Runtime(s)
Non-Occ All Non-Occ All Non-Occ All Non-Occ All Non-Occ All

MC-CNN-acrt 15.20 16.83 12.45 14.12 11.04 12.72 10.13 11.80 4.01 px 4.66 px 22.76
Ours(37) 9.96 11.67 7.23 8.97 5.89 7.62 5.04 6.78 1.84 px 2.56 px 0.34

Table : KITTI 2015 validation set.

Our approach produces much more accurate matches, 2-orders of magnitude
faster than competing approaches [Zbontar & LeCunn, CVPR 2015]
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Results on KITTI

[W. Luo, A. Schwing and R. Urtasun, In CVPR 2016]

Disparity)image�

Flow)image�

Occlusion�
Hinge�
Coplanar�
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Instance Segmentation
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Deep Watershed Transform For Instance Segmentation

Combine deep learning with classical grouping methods

Exploit Semantic Segmentation to focus only on important regions

End-to-End trainable to predict the energy of the system

Inference via a forward pass follow by Watershed transform

Extremely good performance
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Quantitative Results

[M. Bai and R. Urtasun, In ArXiv’16]

mAP mAP(50%) mAP(100m) mAP(50m)

van den Brand et al. 16 2.3 3.7 3.9 4.9
R-CNN + MCG 4.6 12.9 7.7 10.3
Uhrig et al. 16 8.9 21.1 15.3 16.7

Ours 15.6 30.0 26.2 31.8

Table : Cityscapes Test Set: Our approach outperforms the state-of-the-art by
a large margin. Results are averaged over classes (person, rider, car, truck, bus,
train, motorcycle, bicycle)
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Sample Predictions

Input Image Our Prediction Ground Truth
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3D Object Detection and Tracking
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Object Detection

Current approaches to object detection typically work in two steps:

1. Generate object proposals, e.g, bottom-up grouping
2. Score the most promising ones with sophisticated CNNs

Fast RCNN

[Girshick et al. 14]

Unfortunately this works poorly in autonomous driving scenarios

Furthermore, for autonomous driving we need to know distance to obstacle

3D allow us to have better priors, and directly get distances
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Our 3D Object Detection

Use structure prediction to learn to propose object candidates in 3D

road%plane%

Use deep learning to do final detection
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KITTI Detection Results

[ X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler and R. Urtasun, NIPS’15]

Cars Pedestrians Cyclists
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

LSVM-MDPM-sv 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21
SquaresICF - - - 57.33 44.42 40.08 - - -
DPM-C8B1 74.33 60.99 47.16 38.96 29.03 25.61 43.49 29.04 26.20

MDPM-un-BB 71.19 62.16 48.43 - - - - - -
DPM-VOC+VP 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

OC-DPM 74.94 65.95 53.86 - - - - - -
AOG 84.36 71.88 59.27 - - - - - -

SubCat 84.14 75.46 59.71 54.67 42.34 37.95 - - -
DA-DPM - - - 56.36 45.51 41.08 - - -

Fusion-DPM - - - 59.51 46.67 42.05 - - -
R-CNN - - - 61.61 50.13 44.79 - - -

FilteredICF - - - 61.14 53.98 49.29 - - -
pAUCEnsT - - - 65.26 54.49 48.60 51.62 38.03 33.38

MV-RGBD-RF - - - 70.21 54.56 51.25 54.02 39.72 34.82
3DVP 87.46 75.77 65.38 - - - - - -

Regionlets 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83
Faster R-CNN 86.71 81.84 71.12 78.86 65.90 61.18 72.26 63.35 55.90

Ours 93.04 88.64 79.10 81.78 67.47 64.70 78.39 68.94 61.37

Table : Average Precision (AP) (in %) on the test set of the KITTI Object
Detection Benchmark (at the time of paper published)
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Video
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Tracking

[D. Frossard and R. Urtasun, In ArXiv soon]

End-to-end detection and tracking with a deep structured model
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Holistic Models
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Semantic Scene Understanding
[H. Zhang, A. Geiger and R. Urtasun, ICCV 2013]
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The vehicle has to self-localize
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Motivation

Localization is crucial for autonomous systems

GPS has limitations in terms of reliability and availability

Place recognition techniques use image features or depth maps and a
database of previously collected images (e.g., Google car)

We develop an inexpensive technique for localizing to 3m in unseen regions
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Humans as an inspiration

Humans are able to use a map, combined with visual input and exploration,
to localize effectively

Detailed, community developed maps are freely available (OpenStreetMap)

How can we exploit maps, combined with visual cues, to localize a vehicle?
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Probabilistic Localization using Visual Odometry

Maps can be considered as a graph

I Nodes of the graph represent street segments
I Edges represent intersections and transitions between these segments

Position is defined by the current street and the distance travelled d, and
orientation θ on that street

Localization is formulated as posterior inference p(ut , st |y1:t)

∝ p(yt |ut , st)︸ ︷︷ ︸
likelihood

∑
ut−1

∫
p(ut |ut−1, st−1)︸ ︷︷ ︸

street transition

p(st |ut , ut−1, st−1)︸ ︷︷ ︸
pose transition

p(ut−1, st−1|y1:t−1)︸ ︷︷ ︸
previous posterior

dst−1

with ut street segment and st the location and orientation in the segment
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Self-localization
[M. Brubaker, A. Geiger and R. Urtasun, CVPR’13 best paper runner up award]

2,1
50

km
 of ro

ad
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Quantitative Experiments

Average Stereo Odometry Monocular Odometry Map Projection

Position Error 3.1m 18.4m 1.4m

Heading Error 1.3° 3.6° -

Localization Time 36s 62s -

Initial Map Size (km of road)
50.010.02.0
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Better maps will make autonomous driving easier
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Building Road Maps of the World

Companies like HERE maps use dedicated vehicles with many sensors to do
mapping

This has small coverage, and its expensive!

How can we have large coverage and cost 0$?

R. Urtasun (UofT) Affordable Self-Driving Cars 39 / 54



View of an Intelligent Vehicle

A single car has a narrow view of the world
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What can we do?

”Big brother” knows everything about what we are doing
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See through the clouds

drones
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See through the clouds

UAVs
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See through the clouds

planes
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See through the clouds

satellites

R. Urtasun (UofT) Affordable Self-Driving Cars 42 / 54



Challenges of Aerial/Satellite Imagery

shadows occlusion

Typically framed as semantic segmentation

I We can use all the tricks we learned from standard images
I How can we obtain topology?

We don’t need to start from scratch
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Using OpenStreetMaps

More than half the world is already mapped

Typically only contain the road centerline

Trick: Use OSM topology to define the model
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Ground and Aerial Views

Ground and aerial views are very complementary, so we should use both

They do not need to overlap everywhere

We need to estimate the alignment between aerial and ground imagery

I GPS is not good enough
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Large Coverage HD Maps

[G. Mattyus, S. Wang, S. Fidler and R. Urtasun, In CVPR 2016]

Fine-grained categorization

(a) Intersection with tram line (b) Small town

(c) A road with three lanes (d) Two roads with tram stop in between
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Next Big Challenge: Large Scale Semantic 3D
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TorontoCity Benchmark

[S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie, S. Fidler and R. Urtasun, In Arxiv’16]

Full coverage of 712.5km2 with 397, 846 buildings and 8439km of road
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Semantic Segmentation, Road Curb, Road Centerline
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Instance Segmentation
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Groundview road segmentation
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Estimating Road Topology from Aerial Images
[G. Mattyus, W. Luo and R. Urtasun, Soon in Arxiv]

Ours Ground Truth
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Conclusions

Affordable self-driving cars

I Sensing: stereo, flow
I Perception: detection, holistic models
I Localization
I Mapping

Next big benchmark

Still lots of research to be done!
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