Towards Affordable Self-Driving Cars

Raquel Urtasun

4 0 8

≘⇒

Some "Scary" Statistics: Traffic Fatalities

Figure : Road Fatalities per 100,000 inhabitants and year

In total (2010): USA (36,166), Canada (2,075), World (1.24 million!)

← ロ ▶ → イ 同

Benefits of Autonomous Driving

1. Lower the risk of accidents

4 0 8

- 1. Lower the risk of accidents
- 2. Provide mobility for the elderly and people with disabilities
	- In the US 45% of people with disabilities still work

 \leftarrow

Benefits of Autonomous Driving

- 1. Lower the risk of accidents
- 2. Provide mobility for the elderly and people with disabilities
	- In the US 45% of people with disabilities still work
- 3. Decrease pollution for a more healthy environment

- 1. Lower the risk of accidents
- 2. Provide mobility for the elderly and people with disabilities
	- In the US 45% of people with disabilities still work
- 3. Decrease pollution for a more healthy environment
- 4. New ways of Public Transportation

Boring life of a car

• 95% of the time a car is parked

Figure from http://theoatmeal.com/blog/google_self_driving_car

重

K ロ ⊁ K 個 ≯ K 君 ⊁ K 君 ≯

State of the art

Localization, path planning, obstacle avoidance

 \leftarrow

3D Laserscanner

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

3D Laserscanner

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

Stereo, optical flow, visual odometry, structure-from-motion

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking
- 3D scene understanding

What do we need?

• Data: not anyone has an autonomous driving platform!

- **Holistic Models that can capture the complex dependencies between the** different tasks
- **Learning algorithms that are efficient and can learn good representations** that are useful for many tasks.
- Efficient inference algorithms (realtime on CPU, GPU or other HW accelerators)

Collecting Big Data

活

メロメ メ都 メメ きょくきょ

Benchmarks: KITTI Big Data Collection

- \bullet Two stereo rigs (1392 \times 512 px, 54 cm base, 90 $^{\circ}$ opening)
- Velodyne laser scanner, GPS+IMU localization
- 6 hours at 10 frames per second \rightarrow 3Tb

The KITTI Vision Benchmark Suite

[A. Geiger, P. Lenz, R. Urtasun, In CVPR 2012]

First Difficulty: Sensor Calibration

- **Camera calibration [Geiger et al., ICRA 2012]**
- \bullet Velodyne \leftrightarrow Camera registration
- \bullet GPS+IMU \leftrightarrow Velodyne registration

 \leftarrow

Second Difficulty: Object Annotation

- 3D object labels: Annotators (undergrad students from KIT working for months)
- Occlusion labels: Mechanical Turk

[A. Geiger, P. Lenz, R. Urtasun, In CVPR 2012]

イロト イ押ト イヨト イヨト

More than 500 submissions, 20,000 downloads since June 2012!

Reconstructing the 3D World

重

メロメ メ都 メメ きょくきょ

Stereo Estimation

Desired Properties:

- Robust to saturation, shadows, repetitive patterns, specularities, etc
- Good enough to detect obstacles precisely
- **Fast:** current accurate techniques are too slow
- **•** Trainable with only a few images, i.e., 100

Matching Networks: geometry-aware CNN

- Current approaches use a siamese network
- Combine the two branches via concatenation follow by further processing
- **Too slow: 1 minute of** computation on the GPU for **KITTII**

4 0 8

Þ

э

Matching Networks: geometry-aware CNN

- Current approaches use a siamese network
- Combine the two branches via concatenation follow by further processing
- **Too slow: 1 minute of** computation on the GPU for **KITTII**
- We solve this problem by learning features that already capture the similarity

4 D F

Matching Networks: geometry-aware CNN

- Current approaches use a siamese network
- Combine the two branches via concatenation follow by further processing
- **Q** Too slow: 1 minute of computation on the GPU for **KITTII**
- We solve this problem by learning features that already capture the similarity
- **o** Uncertainty estimates by building probability distributions over all possible solutions

4 D F

 \rightarrow \equiv \rightarrow

[W. Luo, A. Schwing and R. Urtasun, In CVPR 2016]

Table : KITTI 2012 validation set.

Table : KITTI 2015 validation set.

Our approach produces much more accurate matches, 2-orders of magnitude faster than competing approaches [Zbontar & LeCunn, CVPR 2015]

[W. Luo, A. Schwing and R. Urtasun, In CVPR 2016]

4 ロ ▶ 4 母 ▶ 4

э. \rightarrow - 4 B K

Þ

Instance Segmentation

重

イロト イ部 トメ ヨ トメ ヨト

Deep Watershed Transform For Instance Segmentation

- **Combine deep learning with classical grouping methods**
- Exploit Semantic Segmentation to focus only on important regions

- End-to-End trainable to predict the energy of the system
- Inference via a forward pass follow by Watershed transform

- Extremely good performance \bullet
	-

[M. Bai and R. Urtasun, In ArXiv'16]

Table : Cityscapes Test Set: Our approach outperforms the state-of-the-art by a large margin. Results are averaged over classes (person, rider, car, truck, bus, train, motorcycle, bicycle)

4 D F

Sample Predictions

4 日下 4 母 画

경계 지경기

× ×.

3D Object Detection and Tracking

活

メロメ メ都 メメ きょくきょ

Object Detection

- **Current approaches to object detection typically work in two steps:**
	- 1. Generate object proposals, e.g, bottom-up grouping
	- 2. Score the most promising ones with sophisticated CNNs

- Unfortunately this works poorly in autonomous driving scenarios
- Furthermore, for autonomous driving we need to know distance to obstacle
- 3D allow us to have better priors, and directly get distances

Our 3D Object Detection

• Use structure prediction to learn to propose object candidates in 3D

Use deep learning to do final detection

 \leftarrow

KITTI Detection Results

[X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler and R. Urtasun, NIPS'15]

4 D F

Table : Average Precision (AP) (in %) on the test set of the KITTI Object Detection Benchmark (at the time of paper published)

重

[D. Frossard and R. Urtasun, In ArXiv soon]

• End-to-end detection and tracking with a deep structured model

-4 B +

Holistic Models

重

イロト イ部 トメ ヨ トメ ヨト

Semantic Scene Understanding

[H. Zhang, A. Geiger and R. Urtasun, ICCV 2013]

The vehicle has to self-localize

← ロ ▶ → 伊

 \rightarrow × э. 活

医头面的

Motivation

• Localization is crucial for autonomous systems

- GPS has limitations in terms of reliability and availability
- Place recognition techniques use image features or depth maps and a database of previously collected images (e.g., Google car)
- We develop an inexpensive technique for localizing to 3m in unseen regions

4 D F

- **•** Humans are able to use a map, combined with visual input and exploration, to localize effectively
- Detailed, community developed maps are freely available (OpenStreetMap)
- \bullet How can we exploit maps, combined with visual cues, to localize a vehicle?

Probabilistic Localization using Visual Odometry

- Maps can be considered as a graph
	- \triangleright Nodes of the graph represent street segments
	- \blacktriangleright Edges represent intersections and transitions between these segments
- Position is defined by the current street and the distance travelled **d**, and orientation θ on that street

Localization is formulated as posterior inference $\bm{\mathsf{p}}(u_t, \mathbf{s}_t | \mathbf{y}_{1:t})$

 $\propto p(\mathbf{y}_t|u_t, \mathbf{s}_t)$ likelihood likelihood \sum u_{t-1} $\int p(u_t|u_{t-1}, \mathbf{s}_{t-1})$ $\overbrace{\text{error}}$ street transition $p(\mathbf{s}_t|u_t, u_{t-1}, \mathbf{s}_{t-1})$ $\overline{}$ $\overline{\$ pose transition $p(u_{t-1}, \mathbf{s}_{t-1}|\mathbf{y}_{1:t-1})$ previous posterior previous posterior $d\mathbf{s}_{t-1}$

4 D F

with u_t street segment and s_t the location and orientation in the segment

Self-localization

[M. Brubaker, A. Geiger and R. Urtasun, CVPR'13 best paper runner up award]

Quantitative Experiments

重

∍

Better maps will make autonomous driving easier

活

メロメ メ都 メメ きょくきょ

Building Road Maps of the World

- Companies like HERE maps use dedicated vehicles with many sensors to do mapping
- This has small coverage, and its expensive!
- How can we have large coverage and cost 0\$?

View of an Intelligent Vehicle

A single car has a narrow view of the world

 \leftarrow

What can we do?

• "Big brother" knows everything about what we are doing

4 □ - 12 **D**

drones

 \leftarrow \Box

× ×. \sim \prec э. \rightarrow Þ

UAVs

 \leftarrow \Box

K

活

∍

planes

 \leftarrow \Box × ∍ \rightarrow - 4 B X э

satellites

 \leftarrow \Box × - 6

Challenges of Aerial/Satellite Imagery

shadows occlusion

4 0 8

Challenges of Aerial/Satellite Imagery

shadows occlusion

- **•** Typically framed as semantic segmentation
	- \triangleright We can use all the tricks we learned from standard images
	- \blacktriangleright How can we obtain topology?

Challenges of Aerial/Satellite Imagery

shadows occlusion

- **•** Typically framed as semantic segmentation
	- \triangleright We can use all the tricks we learned from standard images
	- \blacktriangleright How can we obtain topology?
- We don't need to start from scratch

Using OpenStreetMaps

• More than half the world is already mapped

- **•** Typically only contain the road centerline
- Trick: Use OSM topology to define the model

Ground and Aerial Views

- Ground and aerial views are very complementary, so we should use both
- They do not need to overlap everywhere

• We need to estimate the alignment between aerial and ground imagery

 \triangleright GPS is not good enough

Large Coverage HD Maps

[G. Mattyus, S. Wang, S. Fidler and R. Urtasun, In CVPR 2016]

• Fine-grained categorization

(a) Intersection with tram line (b) Small town

(c) A road with three lanes (d) Two roads with tram stop in between メロメ メ都 メメ きょくきょ

Next Big Challenge: Large Scale Semantic 3D

 \leftarrow \Box

- 4 n⊡ \rightarrow э

$$
\frac{1}{17}
$$

目

おす 高々

TorontoCity Benchmark

[S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie, S. Fidler and R. Urtasun, In Arxiv'16]

• Full coverage of $712.5km^2$ with 397, 846 buildings and $8439km$ of road

Semantic Segmentation, Road Curb, Road Centerline

Input

Ground-truth

R. Urtasun (UofT) [Affordable Self-Driving Cars](#page-0-0) 49 / 54

 α

Instance Segmentation

Input

Ground-truth

Ours

∍

 \Box

- 6

R. Urtasun (UofT) **[Affordable Self-Driving Cars](#page-0-0)** 50 / 54

 290

Groundview road segmentation

Yellow: Ground-truth and prediction agree.

Green: Ground-truth is road and prediction is non-road **Red:** Prediction is road and ground-truth is non-road

R. Urtasun (UofT) **[Affordable Self-Driving Cars](#page-0-0)** 51 / 54

Estimating Road Topology from Aerial Images

[G. Mattyus, W. Luo and R. Urtasun, Soon in Arxiv]

Ours [Gro](#page-64-0)[un](#page-66-0)[d](#page-64-0) [T](#page-65-0)[ru](#page-66-0)[th](#page-0-0) 4 日下 人作

 Ω

Affordable self-driving cars

- \blacktriangleright Sensing: stereo, flow
- \blacktriangleright Perception: detection, holistic models
- \blacktriangleright Localization
- \blacktriangleright Mapping
- Next big benchmark
- **O** Still lots of research to be done!

4 0 8

-4 B X

Acknowledgment

Faculty

Sanja Fidler

Graduate Students

Shenlong Wang Kaustav Kundu Wenjie Luo Min Bai Hang Chu Justin Liang Bin Yang Joel Cheverie

Postdocs

Gellert Mattyus

4 0 8

∢母 \rightarrow \sim э \rightarrow

Þ

Davi Frossard

 \rightarrow \equiv \rightarrow

