Towards Affordable Self-Driving Cars

Raquel Urtasun

Some "Scary" Statistics: Traffic Fatalities

Figure : Road Fatalities per 100,000 inhabitants and year

In total (2010): USA (36,166), Canada (2,075), World (1.24 million!)

イロト イ団ト イヨト イヨト

Benefits of Autonomous Driving

1. Lower the risk of accidents

.∋...>

- 1. Lower the risk of accidents
- 2. Provide mobility for the elderly and people with disabilities
 - ▶ In the US 45% of people with disabilities still work

Benefits of Autonomous Driving

- 1. Lower the risk of accidents
- 2. Provide mobility for the elderly and people with disabilities
 - In the US 45% of people with disabilities still work
- 3. Decrease pollution for a more healthy environment

- 1. Lower the risk of accidents
- 2. Provide mobility for the elderly and people with disabilities
 - In the US 45% of people with disabilities still work
- 3. Decrease pollution for a more healthy environment
- 4. New ways of Public Transportation

Boring life of a car

• 95% of the time a car is parked

Figure from http://theoatmeal.com/blog/google_self_driving_car

æ

イロト イヨト イヨト イヨト

State of the art

• Localization, path planning, obstacle avoidance

3D Laserscanner

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps

3D Laserscanner

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

• Stereo, optical flow, visual odometry, structure-from-motion

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking

State of the art

- Localization, path planning, obstacle avoidance
- Heavy usage of Velodyne and detailed (recorded) maps
- Goal: autonomous driving cheap sensors and little prior knowledge

Problems for computer vision

- Stereo, optical flow, visual odometry, structure-from-motion
- Object detection, recognition and tracking
- 3D scene understanding

What do we need?

• Data: not anyone has an autonomous driving platform!

- Holistic Models that can capture the complex dependencies between the different tasks
- Learning algorithms that are efficient and can learn good representations that are useful for many tasks.
- Efficient inference algorithms (realtime on CPU, GPU or other HW accelerators)

Collecting Big Data

æ

メロト メポト メヨト メヨト

Benchmarks: KITTI Big Data Collection

- Two stereo rigs (1392×512 px, 54 cm base, 90° opening)
- Velodyne laser scanner, GPS+IMU localization
- 6 hours at 10 frames per second \rightarrow 3Tb

The KITTI Vision Benchmark Suite

[A. Geiger, P. Lenz, R. Urtasun, In CVPR 2012]

First Difficulty: Sensor Calibration

- Camera calibration [Geiger et al., ICRA 2012]
- Velodyne \leftrightarrow Camera registration
- GPS+IMU \leftrightarrow Velodyne registration

Second Difficulty: Object Annotation

- 3D object labels: Annotators (undergrad students from KIT working for months)
- Occlusion labels: Mechanical Turk

R. Urtasun (UofT)

[A. Geiger, P. Lenz, R. Urtasun, In CVPR 2012]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• More than 500 submissions, 20,000 downloads since June 2012!

э

Reconstructing the 3D World

æ

イロト イヨト イヨト イヨト

Stereo Estimation

Desired Properties:

- Robust to saturation, shadows, repetitive patterns, specularities, etc
- Good enough to detect obstacles precisely
- Fast: current accurate techniques are too slow
- Trainable with only a few images, i.e., 100

Matching Networks: geometry-aware CNN

- Current approaches use a siamese network
- Combine the two branches via concatenation follow by further processing
- Too slow: 1 minute of computation on the GPU for KITTI!

∃ →

Matching Networks: geometry-aware CNN

- Current approaches use a siamese network
- Combine the two branches via concatenation follow by further processing
- Too slow: 1 minute of computation on the GPU for KITTI!
- We solve this problem by learning features that already capture the similarity

.∋...>

Matching Networks: geometry-aware CNN

- Current approaches use a siamese network
- Combine the two branches via concatenation follow by further processing
- Too slow: 1 minute of computation on the GPU for KITTI!
- We solve this problem by learning features that already capture the similarity
- Uncertainty estimates by building probability distributions over all possible solutions

< A

∃ → (∃ →

[W. Luo, A. Schwing and R. Urtasun, In CVPR 2016]

	> 2 pixel		> 3 pixel		> 4 pixel		> 5 pixel		End-Point		Runtime(s)
	Non-Occ	All									
MC-CNN-acrt	15.02	16.92	12.99	14.93	12.04	13.98	11.38	13.32	4.39 px	5.21 px	20.13
Ours(19)	10.87	12.86	8.61	10.64	7.62	9.65	7.00	9.03	3.31 px	4.2 px	0.14

Table : KITTI 2012 validation set.

	> 2 pixel		> 3 pixel		> 4 pixel		> 5 pixel		End-Point		Runtime(s)
	Non-Occ	All									
MC-CNN-acrt	15.20	16.83	12.45	14.12	11.04	12.72	10.13	11.80	4.01 px	4.66 px	22.76
Ours(37)	9.96	11.67	7.23	8.97	5.89	7.62	5.04	6.78	1.84 px	2.56 px	0.34

Table : KITTI 2015 validation set.

• Our approach produces much more accurate matches, 2-orders of magnitude faster than competing approaches [Zbontar & LeCunn, CVPR 2015]

[W. Luo, A. Schwing and R. Urtasun, In CVPR 2016]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Instance Segmentation

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Deep Watershed Transform For Instance Segmentation

- Combine deep learning with classical grouping methods
- Exploit Semantic Segmentation to focus only on important regions

- End-to-End trainable to predict the energy of the system
- Inference via a forward pass follow by Watershed transform

• Extremely good performance

[M. Bai and R. Urtasun, In ArXiv'16]

-∢∃>

	mAP	mAP(50%)	mAP(100m)	mAP(50m)
van den Brand et al. 16	2.3	3.7	3.9	4.9
R-CNN + MCG	4.6	12.9	7.7	10.3
Uhrig et al. 16	8.9	21.1	15.3	16.7
Ours	15.6	30.0	26.2	31.8

Table : Cityscapes Test Set: Our approach outperforms the state-of-the-art by a large margin. Results are averaged over classes (person, rider, car, truck, bus, train, motorcycle, bicycle)

Sample Predictions

æ

₹ Ξ > < Ξ >

- < A

3D Object Detection and Tracking

2

イロト イヨト イヨト イヨト

Object Detection

- Current approaches to object detection typically work in two steps:
 - 1. Generate object proposals, e.g, bottom-up grouping
 - 2. Score the most promising ones with sophisticated CNNs

- Unfortunately this works poorly in autonomous driving scenarios
- Furthermore, for autonomous driving we need to know distance to obstacle
- 3D allow us to have better priors, and directly get distances

Our 3D Object Detection

• Use structure prediction to learn to propose object candidates in 3D

• Use deep learning to do final detection

KITTI Detection Results

[X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler and R. Urtasun, NIPS'15]

		Cars			Pedestrians		Cyclists		
	Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
LSVM-MDPM-sv	68.02	56.48	44.18	47.74	39.36	35.95	35.04	27.50	26.21
SquaresICF	-	-	-	57.33	44.42	40.08		-	-
DPM-C8B1	74.33	60.99	47.16	38.96	29.03	25.61	43.49	29.04	26.20
MDPM-un-BB	71.19	62.16	48.43	-	-	-	-	-	-
DPM-VOC+VP	74.95	64.71	48.76	59.48	44.86	40.37	42.43	31.08	28.23
OC-DPM	74.94	65.95	53.86	-	-	-	-	-	-
AOG	84.36	71.88	59.27	-	-	-		-	-
SubCat	84.14	75.46	59.71	54.67	42.34	37.95	-	-	-
DA-DPM	-	-	-	56.36	45.51	41.08	-	-	-
Fusion-DPM	-	-	-	59.51	46.67	42.05	-	-	-
R-CNN	-	-	-	61.61	50.13	44.79	-	-	-
FilteredICF	-	-	-	61.14	53.98	49.29	-	-	-
pAUCEnsT	-	-	-	65.26	54.49	48.60	51.62	38.03	33.38
MV-RGBD-RF	-	-	-	70.21	54.56	51.25	54.02	39.72	34.82
3DVP	87.46	75.77	65.38	-	-	-	-	-	-
Regionlets	84.75	76.45	59.70	73.14	61.15	55.21	70.41	58.72	51.83
Faster R-CNN	86.71	81.84	71.12	78.86	65.90	61.18	72.26	63.35	55.90
Ours	93.04	88.64	79.10	81.78	67.47	64.70	78.39	68.94	61.37

Table : Average Precision (AP) (in %) on the test set of the KITTI Object Detection Benchmark (at the time of paper published)

-∢ ∃ ▶

2

Tracking

[D. Frossard and R. Urtasun, In ArXiv soon]

• End-to-end detection and tracking with a deep structured model

-∢ ∃ ▶

Holistic Models

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Semantic Scene Understanding

[H. Zhang, A. Geiger and R. Urtasun, ICCV 2013]

э

The vehicle has to self-localize

2

イロト イヨト イヨト イヨト

Motivation

• Localization is crucial for autonomous systems

- GPS has limitations in terms of reliability and availability
- Place recognition techniques use image features or depth maps and a database of previously collected images (e.g., Google car)
- We develop an inexpensive technique for localizing to 3m in unseen regions

< A

- Humans are able to use a map, combined with visual input and exploration, to localize effectively
- Detailed, community developed maps are freely available (OpenStreetMap)
- How can we exploit maps, combined with visual cues, to localize a vehicle?

Probabilistic Localization using Visual Odometry

- Maps can be considered as a graph
 - Nodes of the graph represent street segments
 - Edges represent intersections and transitions between these segments
- Position is defined by the current street and the distance travelled ${\bf d},$ and orientation θ on that street

• Localization is formulated as posterior inference $p(u_t, \mathbf{s}_t | \mathbf{y}_{1:t})$

 $\propto \underbrace{p(\mathbf{y}_t|u_t, \mathbf{s}_t)}_{\text{likelihood}} \sum_{u_{t-1}} \int \underbrace{p(u_t|u_{t-1}, \mathbf{s}_{t-1})}_{\text{street transition}} \underbrace{p(\mathbf{s}_t|u_t, u_{t-1}, \mathbf{s}_{t-1})}_{\text{pose transition}} \underbrace{p(u_{t-1}, \mathbf{s}_{t-1}|\mathbf{y}_{1:t-1})}_{\text{previous posterior}} d\mathbf{s}_{t-1}$

with u_t street segment and \mathbf{s}_t the location and orientation in the segment

[M. Brubaker, A. Geiger and R. Urtasun, CVPR'13 best paper runner up award]

R. Urtasun (UofT)

Affordable Self-Driving Cars

36 / 54

Quantitative Experiments

Average	Stereo Odometry	Monocular Odometry	Map Projection	
Position Error	3.1m	18.4m	1.4m	
Heading Error	1.3°	3.6°	-	
Localization Time	36s	62s	-	

æ

э.

Better maps will make autonomous driving easier

æ

イロト イヨト イヨト イヨト

Building Road Maps of the World

- Companies like HERE maps use dedicated vehicles with many sensors to do mapping
- This has small coverage, and its expensive!
- How can we have large coverage and cost 0\$?

View of an Intelligent Vehicle

• A single car has a narrow view of the world

What can we do?

• "Big brother" knows everything about what we are doing

Image: A 1 → A

drones

æ

< ≣ >

.⊒ . ►

æ

UAVs

42 / 54

2

э

planes

B ▶ < B ▶

satellites

Challenges of Aerial/Satellite Imagery

shadows

occlusion

Challenges of Aerial/Satellite Imagery

shadows

occlusion

- Typically framed as semantic segmentation
 - We can use all the tricks we learned from standard images
 - How can we obtain topology?

Challenges of Aerial/Satellite Imagery

shadows

occlusion

- Typically framed as semantic segmentation
 - We can use all the tricks we learned from standard images
 - How can we obtain topology?
- We don't need to start from scratch

Using OpenStreetMaps

• More than half the world is already mapped

- Typically only contain the road centerline
- Trick: Use OSM topology to define the model

Ground and Aerial Views

- Ground and aerial views are very complementary, so we should use both
- They do not need to overlap everywhere

• We need to estimate the alignment between aerial and ground imagery

GPS is not good enough

Large Coverage HD Maps

[G. Mattyus, S. Wang, S. Fidler and R. Urtasun, In CVPR 2016]

• Fine-grained categorization

(a) Intersection with tram line

(c) A road with three lanes

(b) Small town

(d) Two roads with tram stop in between

Next Big Challenge: Large Scale Semantic 3D

æ

イロト イヨト イヨト イヨト

TorontoCity Benchmark

[S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang, J. Cheverie, S. Fidler and R. Urtasun, In Arxiv'16]

• Full coverage of 712.5km² with 397,846 buildings and 8439km of road

< A

Semantic Segmentation, Road Curb, Road Centerline

Input

Ground-truth

Affordable Self-Driving Cars

Instance Segmentation

Input

Ground-truth

Ours

э

R. Urtasun (UofT)

Affordable Self-Driving Cars

50 / 54

Groundview road segmentation

Yellow: Ground-truth and prediction agree. Green: Ground-truth is road and prediction is non-road Red: Prediction is road and ground-truth is non-road

R. Urtasun (UofT)

Affordable Self-Driving Cars

Estimating Road Topology from Aerial Images

[G. Mattyus, W. Luo and R. Urtasun, Soon in Arxiv]

Ours

Ground Truth

R. Urtasun (UofT)

52 / 54

• Affordable self-driving cars

- Sensing: stereo, flow
- Perception: detection, holistic models
- Localization
- Mapping
- Next big benchmark
- Still lots of research to be done!

-∢∃>

Acknowledgment

Faculty

Sanja Fidler

Graduate Students

Shenlong Wang Kaustav Kundu

Davi Frossard

Wenjie Luo

Min Bai

Hang Chu

Postdocs

Gellert Mattyus

Justin Liang

Bin Yang

(日) (同) (三) (三)

Joel Cheverie

э

54 / 54