Interpretable Machine Learning for Recidivism Prediction

Cynthia Rudin Department of Computer Science Department of Electrical and Computer Engineering Duke University

joint work with Berk Ustun, Jiaming Zeng, Elaine Angelino, Daniel Alabi, Nicholas Larus-Stone, Margo Seltzer, and Hima Lakkaraju

VERNON PRATER	BRISHA BORDEN HIGH RISK 8
VERNON PRATER	BRISHA BORDEN
Prior Offenses 2 armed robberies, 1 attempted armed	Prior Offenses 4 juvenile misdemeanors
robbery Subsequent Offenses 1 grand theft	Subsequent Offenses None
LOW RISK 3	HIGH RISK 8

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica May 23, 2016

COMPAS: Correctional Offender Management Profiling for Alternative Sanctions A computer program used for bail and sentencing decisions was labeled biased against blacks. It's actually not that clear.

By Sam Corbett-Davies, Emma Pierson, Avi Feller and Sharad Goel October 1

COMPAS may still be biased, but we can't tell.

Northpointe has refused to disclose the details of its proprietary algorithm, making it impossible to fully assess the extent to which it may be unfair, however inadvertently. That's understandable: Northpointe needs to protect its bottom line. But it raises questions about relying on for-profit companies to develop risk assessment tools.

I point if person
has social type
with below
average parole
violation rate

total score

significant factors

success at parole

over all 21

predicts

SOCIAL TYPE	VIOLATION RATE
All persons	26.5%
Mean citizen. Drunkard	
Gangster Recent immigrant	. 23.2
Farm boy Drug addict	. 10.2

POINTS FOR	Per Cent Non-
NUMBER OF	violators of
FACTORS	Parole
16-21	98.5
14-15	97.8
13	91.2
12	84.9
11	77.3
10	65.9
7-9	56.1
5-6	82.9
2-4	24.0

Burgess. Factors determining success or failure on parole. 1928

FACTOR	Score *
Gender	
Female	0
Male	1
Age	
Less than 24	3
24-29	2
30-49	1
50+	0
County	
Rural counties	0
Smaller, urban count	1
Allegheny and	
Philadelphia	2
Counties	
Total number of prior ar	rests
0	0
1	1
2 to 4	2
5 to 12	3
13+	4
Prior property arrests	
No	0
Yes	1
Prior drug arrests	
No	0
Yes	1
Property offender	
No	0
Yes	1
Offense gravity score (O	GS)
4+	0

Risk score	N	% Arrested
	3	0.0
0		
1	47	17.0
2	181	9.9
3	436	23.6
4	737	24.8
5	1,036	32.4
6	1,067	40.7
7	1,434	47.2
8	1,934	55.5
9	2,103	62.3
10	1,829	69.9
11	1,098	72.2
12	278	79.1
13	25	80.0
14	3	66.7

Pennsylvania Commission on Sentencing, 2013

1. Lived with both biological parents to age 16 (except for death of parent): Yes--2 No+3 Evidence: 2. Elementary School Maladjustment: No Problems.....-1 Slight (Minor discipline or attendance) or Moderate Problems.....+2 Severe Problems (Frequent disruptive behavior and/or attendance or behavior resulting in expulsion or serious suspensions)+5 (Same as CATS Item) 3. History of alcohol problems (Check if present); Parental Alcoholism [~] Teenage Alcohol Problem Alcohol involved in prior offense Adult Alcohol Problem Alcohol involved in index offense No boxes checked......-1 1 or 2 boxes checked 0 3 boxes checked+1 4 or 5 boxes checked+2 Evidence: 4. Marital status (at the time of or prior to index offense): Ever married (or lived common law in the same home for at least six months) -2 Never married......+1 Evidence: 5. Criminal history score for nonviolent offenses prior to the index offense Score 0--2 Score 1 or 2..... 0 Score 3 or above+3 (from the Cormier-Lang system, see below) 6. Failure on prior conditional release (includes parole or probation violation or revocation, failure to comply, bail violation, and any new arrest while on conditional release): No.....0 Yes+3 Evidence: 7. Age at index offense Enter Date of Index Offense: / / Enter Date of Birth: / / Subtract to get Age: 28 - 33--1 270 26 or less..... +2

8. Victim Injury (for index offense: the most serious is scored): Death.....-2 Hospitalized.....0 Treated and released......+1 None or slight (includes no victim)......+2 Note: admission for the gathering of forensic evidence only is NOT considered as either treated or hospitalized; ratings should be made based on the degree of injury. Evidence: 9. Any female victim (for index offense) Yes--1 No (includes no victim).....+1 Evidence: 10. Meets DSM criteria for any personality disorder (must be made by appropriately licensed or certified professional) No.....-2 Yes+3 Evidence: 11. Meets DSM criteria for schizophrenia (must be made by appropriately licensed or certified professional) Yes--3 No +1 Evidence: 12. a. Psychopathy Checklist score (if available, otherwise use item 12.b. CATS score)...... 5 – 9.....--3 10-14-1 15-240 35 or higher +12 Note: If there are two or more PCL scores. average the scores. Evidence: 12. b. CATS score (from the CATS worksheet) 2 or 30 4+2 5 or higher +3 12. WEIGHT (Use the highest circled weight from 12 a. or 12 b.) TOTAL VRAG SCORE (SUM CIRCLED SCORES FOR ITEMS 1 - 11 PLUS THE

WEIGHT FOR ITEM 12):

VRAG Score	Category of Risk
-24	Low
-23	Low
-22	Low
-20	Low
-19	Low
-18	Low
-17	Low
-16	Low
-15	Low
-14	Low
-13	Low
-12	Low
-11	Low
-10	Low
-9	Low
-8	Low
-7	Medium
-6	Medium
-5 -4	Medium
-4 -3	Medium
-3	Medium Medium
-2 -1	Medium
0	Medium
1	Medium
2	Medium
3	Medium
4	Medium
5	Medium
6	Medium
7	Medium
8	Medium
9	Medium
10	Medium
11	Medium
2	Medium
13	Medium
14	High
15	High
16	High
17	High
18	High
19	High
20	High
21	High
22	High
23	High
24	High
25	High
26	High
28	High
32	High

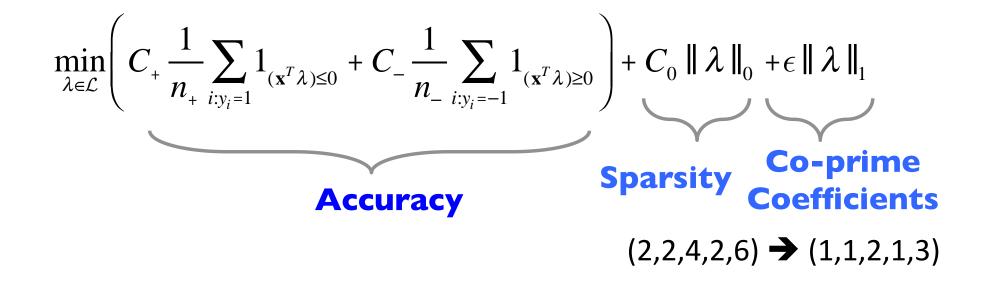
Is there a principled way to create scoring systems?

Should we have experts create it and validate it afterwards?

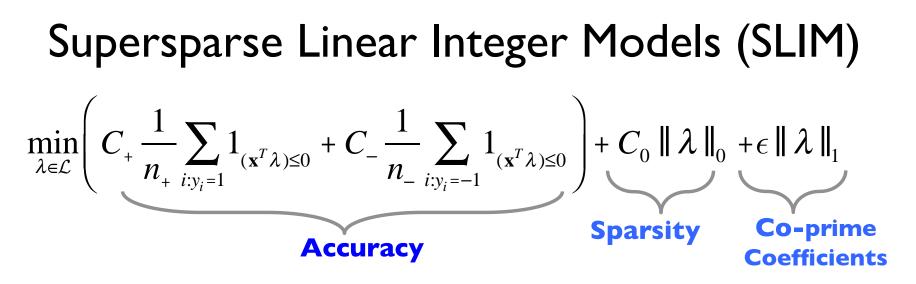
Should we do manual feature selection and round logistic regression coefficients?

Should we actually solve it?

Supersparse Linear Integer Models (SLIM)



 $\lambda \in \mathcal{L}$ means that $\forall j, \lambda_j \in \{-10, -9, ..., 0, ..., 9, 10\}$ Meaningful Coefficients

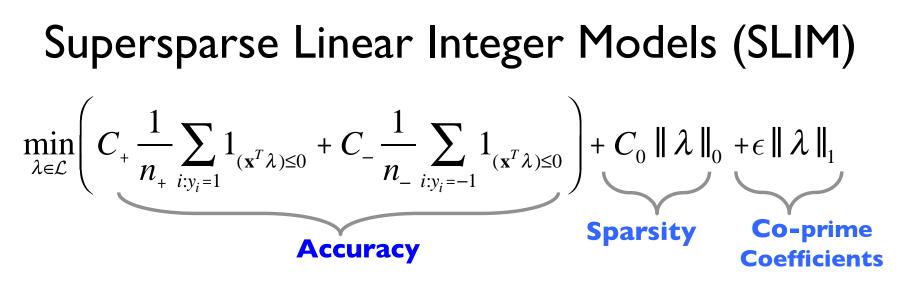


 $\lambda \in \mathcal{L}$ means that $\forall j, \ \lambda_j \in \{-10, -9, ..., 0, ..., 9, 10\}$ Meaningful Coefficients

How much training accuracy do I sacrifice for one fewer term in the model? C_0

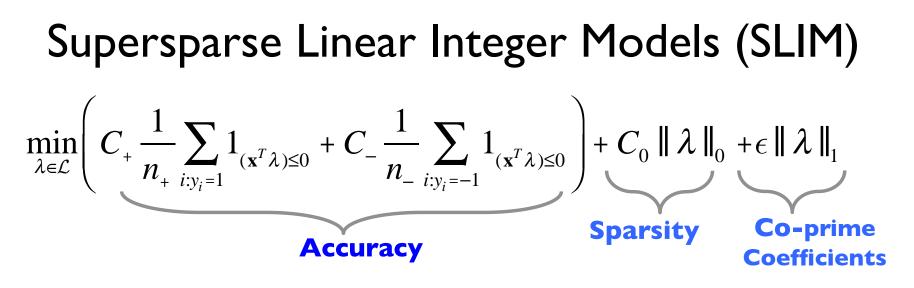
How much training accuracy do I trade for co-prime coefficients? Provably none.

Could there be a sparser model with equivalent training accuracy? Provably not.



 $\lambda \in \mathcal{L}$ means that $\forall j, \ \lambda_j \in \{-10, -9, ..., 0, ..., 9, 10\}$ Meaningful Coefficients

Can I get a model that is optimal for a particular sensitivity/specificity (TP/FP) tradeoff?



 $\lambda \in \mathcal{L}$ means that $\forall j, \ \lambda_j \in \{-10, -9, ..., 0, ..., 9, 10\}$ Meaningful Coefficients

Does Lasso+rounding give the same result? No. Can be a lot worse.

SLIM MIP

$$\begin{split} \min_{\boldsymbol{\lambda}, \boldsymbol{\psi}, \boldsymbol{\Phi}, \boldsymbol{\alpha}, \boldsymbol{\beta}} \ \frac{1}{N} \sum_{i=1}^{N} \psi_i + \sum_{j=1}^{P} \Phi_j \\ \text{s.t.} \qquad M_i \psi_i \geq \gamma - \sum_{j=0}^{P} y_i \lambda_j x_{i,j} \qquad i = 1, \dots, N \ 0^{-1} \ loss \\ \Phi_j = C_0 \alpha_j + \epsilon \beta_j \qquad j = 1, \dots, P \ int. \ penalty \\ -\Lambda_j \alpha_j \leq \lambda_j \leq \Lambda_j \alpha_j \qquad j = 1, \dots, P \ \ell_0 \ norm \\ -\beta_j \leq \lambda_j \leq \beta_j \qquad j = 1, \dots, P \ \ell_1 \ norm \\ \lambda_j \in \mathcal{L}_j \qquad j = 0, \dots, P \ int. \ set \\ \psi_i \in \{0, 1\} \qquad i = 1, \dots, N \ loss \ variables \\ \Phi_j \in \mathbb{R}_+ \qquad j = 1, \dots, P \ \ell_0 \ variables \\ \alpha_j \in \{0, 1\} \qquad j = 1, \dots, P \ \ell_0 \ variables \\ \beta_j \in \mathbb{R}_+ \qquad j = 1, \dots, P \ \ell_0 \ variables \\ \beta_j \in \mathbb{R}_+ \qquad j = 1, \dots, P \ \ell_1 \ variables \end{split}$$

(Code is publicly available)

Recidivism Prediction Problems

Recidivism of Prisoners Released in 1994 (Source: US DOJ BJS)

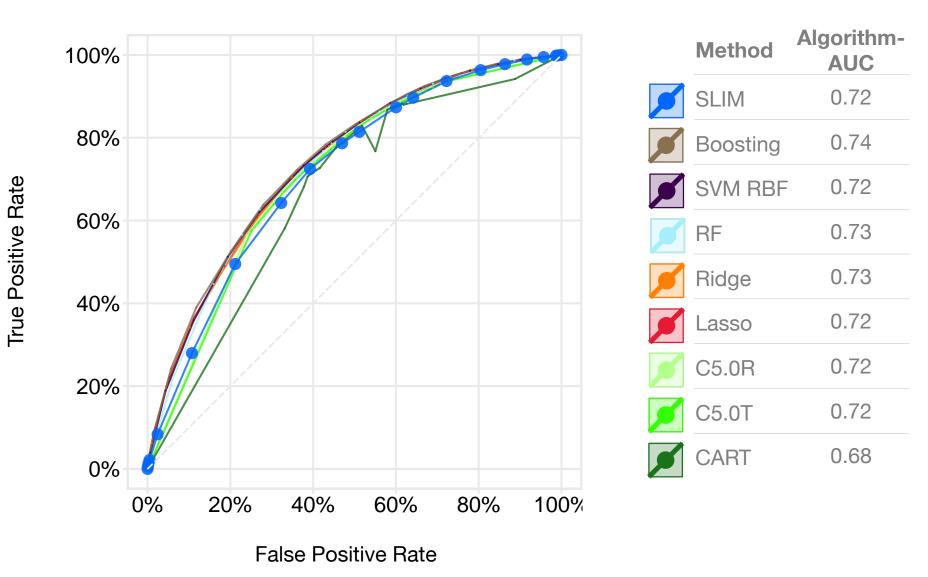
N = 33,796 prisoners tracked for 3 years after release from prison in 1994

P = 49 binary input variables

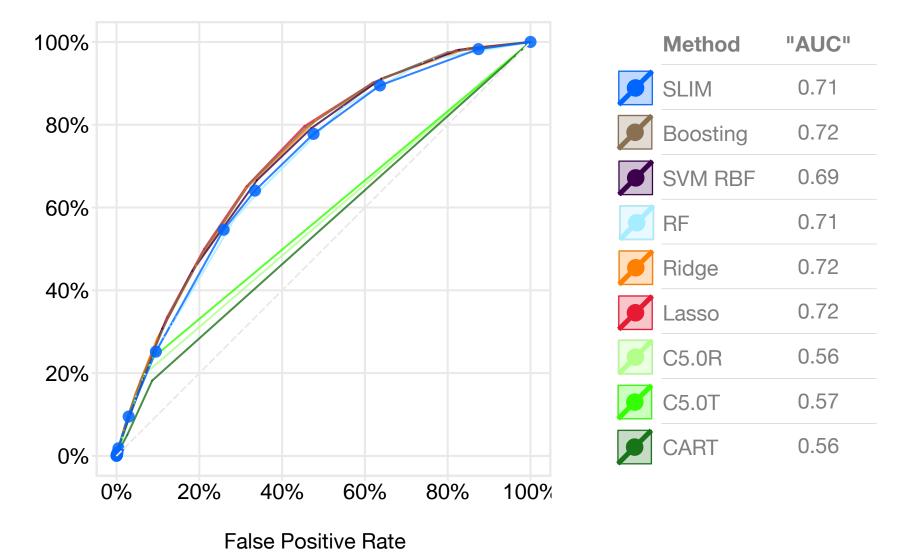
- *male, female*
- prior_drug_abuse, prior_alcohol_abuse
- *age_of_1st_arrest, age_of_1st_confinement, prior_arrests, prior_prison_time*
- age_at_release, time_served, type of release, infraction_in_prison

Prediction Problem	$P(y_i = +1)$	Outcome (rearrested in 3 year after release)
arrest	59.0%	for any crime
drug	20.0%	for drug crime (e.g. possession, trafficking, etc.)
general_violence	19.1%	for violent crime (e.g. robbery, aggravated assault)
domestic_violence	3.5%	for domestic violence crime
sexual_violence	3.0%	for sexual violence crimes
fatal_violence	0.7%	for murder or manslaughter

arrest

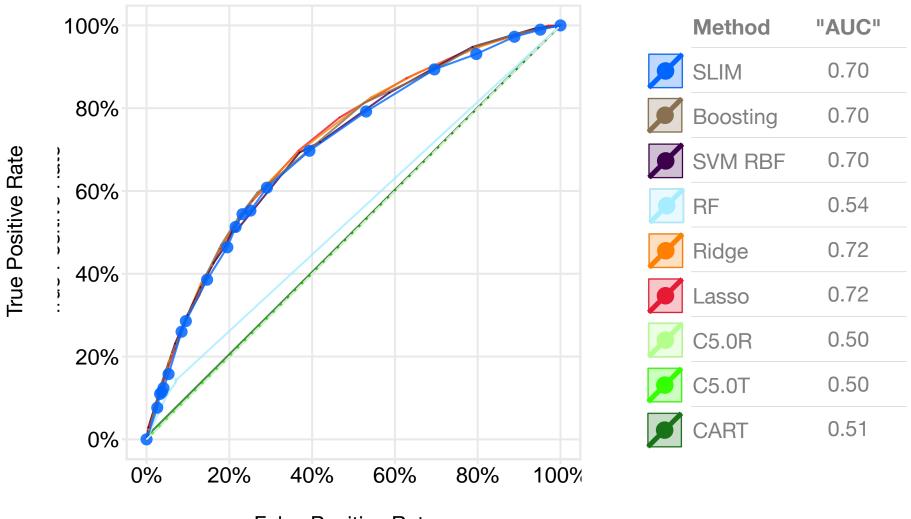


general violence



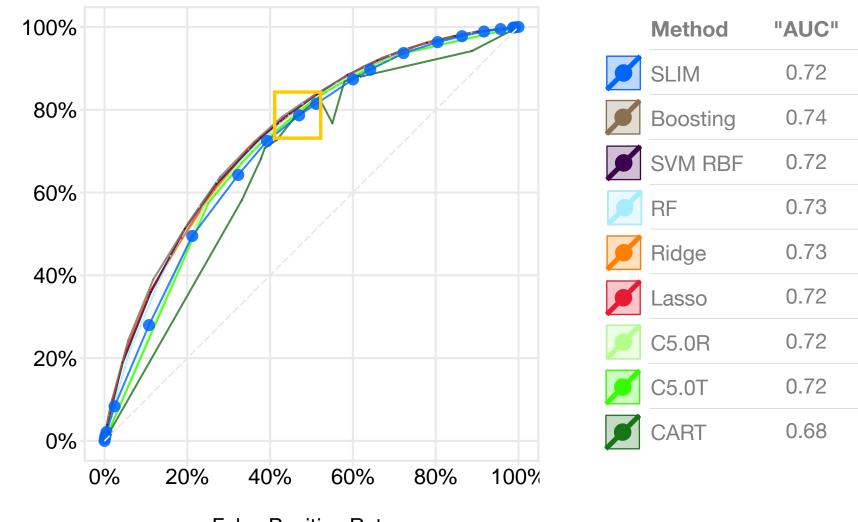
True Positive Rate

sexual violence



False Positive Rate

arrest



False Positive Rate

True Positive Rate

PREDICT ARREST FOR ANY OFFENSE IF SCORE > 1

1.	age_at_release_18_to_24	2 points		••••
2.	prior_arrests ≥5	2 points	+	••••
3.	prior_arrest_for_misdemeanor	1 point	+	••••
4.	no_prior_arrests	-1 point	+	••••
5.	$age_at_release \ge 40$	-1 point	+	•••••
	ADD POINTS FROM ROWS 1–5	SCORE	=	••••

PREDICT arrest if

age_at_release_18_to_24

OR *prior_arrests* \geq 5 **AND** *age_at_release* \leq 40

OR *prior_arrests* \geq 5 **AND** *age_at_release* \geq 40 **AND** *misdemeanor*

domestic violence

PREDICT ARREST FOR DOMESTIC VIOLENCE OFFENSE IF SCORE > 3

	ADD POINTS FROM ROWS 1-5	SCORE	=	• • • • • •
5.	infraction_in_prison	-5 points	+	
4.	age_1st_confinement_18_to_24	1 point	+	
3.	prior_arrest_for_domestic_violence	2 points	+	
2.	prior_arrest_for_felony	3 points	+	
1.	prior_arrest_for_misdemeanor	4 points		•••••

 Test TPR/FPR:
 76.6/44.5%

 Validation TPR/FPR:
 81.4/48.0%

general_violence

PREDICT ARREST FOR GENERAL VIOLENCE OFFENSE IF SCORE > 7

1.	prior_arrest_for_general_violence	8 points		•••••
2.	prior_arrest_for_misdemeanor	5 points	+	
3.	infraction_in_prison	3 points	+	
4.	prior_arrest_for_local_ord	3 points	+	
5.	prior_arrest_for_property	2 points	+	
6.	prior_arrest_for_fatal_violence	2 points	+	
7.	prior_arrest_with_firearms_involved	1 point	+	
8.	$age_at_release \ge 40$	-7 points	+	
	ADD POINTS FROM ROWS 1-8	SCORE	=	•••••

 Test TPR/FPR:
 76.7/45.4%

 Validation TPR/FPR:
 76.8/47.6%

sexual_violence

PREDICT ARREST FOR SEXUAL VIOLENCE OFFENSE IF SCORE > 2

1.	prior_arrest_for_sexual	3 points		••••
2.	$prior_arrests \ge 5$	1 point	+	••••
3.	multiple_prior_jail_time	1 point	+	••••
4.	prior_arrest_for_multiple_types_of_crime	-1 point	+	••••
5.	no_prior_arrests	-2 points	+	••••
	ADD POINTS FROM ROWS 1-5	SCORE	=	• • • • • •

 Test TPR/FPR:
 44.3/17.7%

 Validation TPR/FPR:
 43.7/19.9%

fatal_violence

PREDICT ARREST FOR FATAL VIOLENCE OFFENSE IF SCORE > 4

	ADD POINTS FROM ROWS 1-6	SCORE	=	• • • • • •
6.	prior_arrest_for_drugs	1 point	+	••••
5.	age_at_release_18_to_24	1 point	+	•••••
4.	prior_arrest_for_felony	2 points	+	•••••
3.	age_1st_confinement_18_to_24	2 points	+	•••••
2.	prior_arrest_with_firearms_involved	3 points	+	•••••
1.	$age_1st_confinement \le 17$	5 points		••••

 Test TPR/FPR:
 55.4/35.5%

 Validation TPR/FPR:
 63.2/42.4%

Risk Assessment Models

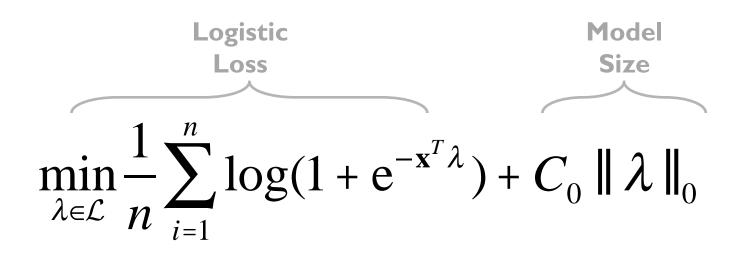
Decision-Making Model

	PREDICT ARREST FOR ANY OFFENSE IF SCORE > 1								
1.	age_at_release_18_to_24	2 points		••••					
2.	prior_arrests ≥5	2 points	+	••••					
3.	prior_arrest_for_misdemeanor	1 point	+	••••					
4.	no_prior_arrests	-1 point	+	••••					
5.	$age_at_release \ge 40$	-1 point	+	•••••					
	ADD POINTS FROM ROWS 1–5	SCORE	=	••••					

Risk Assessment Model

1	•		`		1	• ,		
1.	prior ar	$rrests \geq 2$	oint	• • • • • •				
2.	prior ar	$rests \ge 5$	5	1 p	oint +			
3.	prior ar	oint +						
4.	ageatre	oint +						
5.	age at re	$elease \ge$	-1 p	oint +				
ADD POINTS FROM ROWS 1-5 SCORE = \cdots								
SCORE		-1	0	1	2	3	4	
RISK		11.9%	26.9%	50.0%	73.1%	88.1%	95.3%	

Risk-Calibrated SLIM

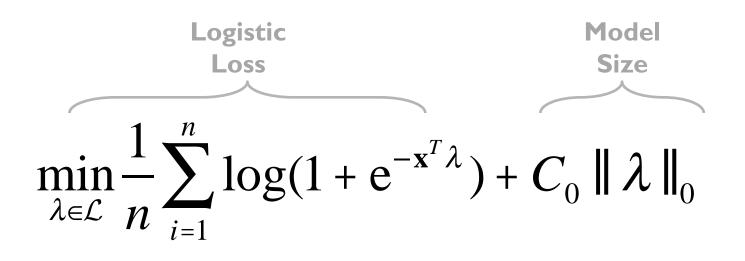


 $\lambda \in \mathcal{L}$ means that $\forall j, \lambda_j \in \{-10, -9, ..., 0, ..., 9, 10\}$

Small Integer Coefficients

Ustun and Rudin, 2017

Risk-Calibrated SLIM



 $\lambda \in \mathcal{L}$ means that $\forall j, \lambda_j \in \{-10, -9, \dots, 0, \dots, 9, 10\}$

- Specialized cutting-plane methods
- Scales to large samples

Ustun and Rudin, 2017

RiskSlim Model for Arrest

1.	$Prior \ Arrests \geq 2$	1 point		
2.	$Prior \ Arrests \geq 5$	1 point	+	
3.	Prior Arrests for Local Ordinance	1 point	+	
4.	Age at Release between 18 to 24	1 point	+	••••
5.	Age at Release ≥ 40	-1 points	+	••••
	ADD POINTS FROM ROWS 1–5	SCORE	=	•••••

SCORE	-1	0	1	2	3	4
RISK	11.9%	26.9%	50.0%	73.1%	88.1%	95.3%

Jiaming Zeng

Nicholas Larus-Stone

Margo Seltzer

Rule List Models (Decision Lists)

- \circ if (age = 18-20) then Recidivism = yes
- \circ else if (male and age = 21-25) then Recidivism = yes
- \circ else if (age = 26-30 and priors = 2-3) then Recidivism = yes
- \circ else if (priors > 3) then Recidivism = yes
- o else (no)

Rule List Models (Decision Lists)

- \circ if (age = 18-20) then Recidivism = yes
- \circ else if (male and age = 21-25) then Recidivism = yes
- \circ else if (age = 26-30 and priors = 2-3) then Recidivism = yes
- \circ else if (priors > 3) then Recidivism = yes
- o else (no)

- Interpretable, logical
- Computationally hard to compute from data

A new method for rule list learning

- With Elaine Angelino, Daniel Alabi, Nicholas Larus-Stone, Margo Seltzer
- Minimizes: errors + C* #rules
- Uses custom branch-and-bound.
 - Mines high-frequency itemsets, assembles rule list

```
if (age = 18-20) then Recidivism = yes
else if (male and age = 21-25) then Recidivism = yes
else if (age = 26-30 and priors = 2-3) then Recidivism = yes
else if (priors > 3) then Recidivism = yes
else (no)
```

A new method for rule list learning

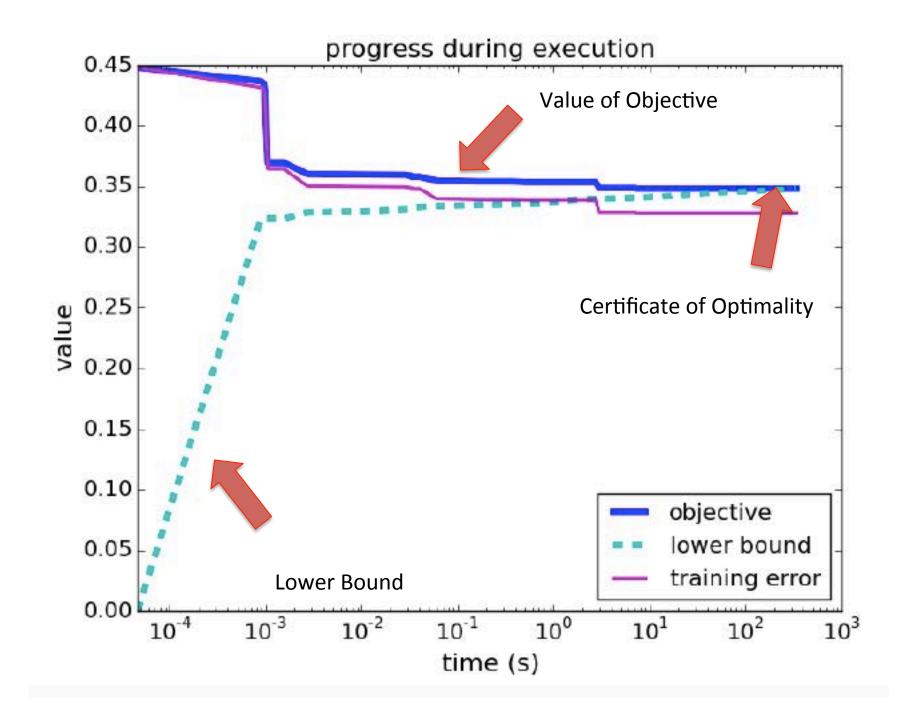
- With Elaine Angelino, Daniel Alabi, Nicholas Larus-Stone, Margo Seltzer
- Minimizes: errors + C* #rules
- Uses custom branch-and-bound.
 - Mines high-frequency itemsets, assembles rule list
 - Fast bit-vector calculations, careful data structures
 - Knowledge of symmetry for rule lists
 - Theorems: Prefixes of rule lists that are too inaccurate or provably non-interpretable are removed (along with descendants)
 - Creates a certificate of optimality provides best-in-class accuracy/interpretability tradeoff

Back to COMPAS score

 ProPublica calculated that on their recidivism dataset, COMPAS accuracy was <u>65.37%</u>.

	All	Defendants	
2		Low	High
	Survived	2681	1282
	Recidivated	1216	2035

Does an interpretable model with that accuracy exist?



Rule List Models (Decision Lists)

- \circ if (age = 18-20) then Recidivism = yes
- \circ else if (male and age = 21-25) then Recidivism = yes
- \circ else if (age = 26-30 and priors = 2-3) then Recidivism = yes
- \circ else if (priors > 3) then Recidivism = yes
- o else (no)

- if (male and juvenile crimes > 0) then Recidivism = yes
- else if (juvenile felonies = 0 and priors > 3) then Recidivism = yes
- else (no)

- Propublica article quotes COMPAS/ Northpointe founder Brennan:
- "Brennan said it is difficult to construct a score that doesn't include items that can be correlated with race such as poverty, joblessness and social marginalization.
 "If those are omitted from your risk assessment, accuracy goes down," he said.

Hima Lakkaraju

Learning Cost-Effective Treatment Regimes

- Model should be "causal": includes counterfactual inference
- Includes costs of gathering information (medical testing)
- Costs of treatment (cost of drug & side effects)
- Costs of outcome (making a wrong decision)
- Gives a prescription of how to test and treat each patient.

Learning Cost-Effective Treatment Regimes

- If Gender=F, Current-Charge =Minor, Prev-Offense=None then Release on Personal Recognizance
- Else if Prev-Offense=Yes and Prior-Arrest =Yes then Release on Condition
- Else if Current-Charge =Misdemeanor and Age ≤ 30 then Release on Condition
- Else if Age ≥ 50 and Prior-Arrest=No, then Release on Personal Recognizance
- Else if Marital-Status=Single and Pays-Rent =No & Current-Charge =Misd. then Release on Condition
- Else if Addresses-Past-Yr ≥ 5 then Release on Condition
- Else Release on Personal Recognizance

Berk Ustun's new ADHD scoring system

						RARELY	SOME- TIMES	OFTEN	VERY OFTEN
How often do you people say to you			U		0	4	4	5	5
How often do you leave your seat in meetings or situations in which you are expected to remain seated?						0	I	I	5
How often do you have difficulty unwinding and relaxing when you have time to yourself?						4	4	6	6
How often do you finish the sentences of people you talk to, before they can finish them themselves?						0	2	2	2
How often do you	put thing	s off until 1	the last mi	nute?	0	2	2	4	4
How often do you depend on others to keep your life in order and attend to details?						2	3	3	3
TOTAL SCORE	16		17	18	19	to 25			
PREDICTED RISK	<5.0%	11.9%	26.9%	50.0%	73	8.1%	88.1%	6 >	95.0%

Thanks