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Many Related Terms

Machine Learning

Data Science
Pattern Recognition

Neural Networks

Data Mining

Data Analytics

Artificial Intelligence

Deep Learning

Statistical Modelling
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Many Related Fields

Machine Learning

Physics

Applied Mathematics

Statistics

Computational 

Neuroscience

Cognitive Science

Computer Science

Economics

Engineering
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Many Many Applications

Machine Learning

Scientific Data Analysis Natural Language  

Processing

Computer Vision

Information Retrieval

Medical Informatics

Bioinformatics

Speech Recognition

Robotics

Signal Processing

Data CompressionFinance

Machine Translation

Targeted Advertising

Recommender Systems
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Machine Learning
• Machine learning is an interdisciplinary field that develops both the 

mathematical foundations and practical applications of  systems 
that learn from data. 

Main conferences and journals: NIPS, ICML, AISTATS, UAI, KDD, JMLR, IEEE TPAMI
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Canonical problems in machine learning
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Classification

• Task: predict discrete class label from input data 

• Applications: face recognition, image recognition, medical diagnosis… 

• Methods: Logistic Regression, Support Vector Machines (SVMs), 
Neural Networks, Random Forests, Gaussian Process Classifiers…
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Regression D

x

y

• Task: predict continuous quantities from input data 

• Applications: financial forecasting, click-rate prediction, … 

• Methods: Linear Regression, Neural Networks, Gaussian Processes, …
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Clustering

)
• Task: group data together so that similar points are in the same group 

• Applications: bioinformatics, astronomy, document modelling, 
network modelling, … 

• Methods: k-means, Gaussian mixtures, Dirichlet process mixtures, …
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Dimensionality Reduction
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• Task: map high-dimensional data onto low dimensions while 
preserving relevant information 

• Applications: any where the raw data is high-dimensional 

• Methods: PCA, factor analysis, MDS, LLE, Isomap, GPLVM,…
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Semi-supervised Learning

✰ ✰

✰

✦

✦

❄

• Task: learn from both labelled and unlabelled data 

• Applications: any where labelling data is expensive, e.g. vision,speech… 

• Methods: probabilistic models, graph-based SSL, transductive SVMs…
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Computer Vision:  
Object, Face and Handwriting Recognition, 

Image Captioning



Computer Games



Autonomous Vehicles



Neural networks and deep learning
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NEURAL NETWORKS

inputs

outputs

x

y

weights

hidden

units

weights

Neural networks

Data: D = {(x(n), y(n))}N
n=1 = (X, y)

Parameters θ are weights of neural net.

Neural nets model p(y(n)|x(n),θ) as a nonlin-

ear function of θ and x, e.g.:

p(y(n) = 1|x(n),θ) = σ(
∑

i

θix
(n)
i )

Multilayer neural networks model the overall function as a

composition of functions (layers), e.g.:

y(n) =
∑

j

θ
(2)
j σ(

∑
i

θ
(1)
ji x

(n)
i ) + ǫ(n)

Usually trained to maximise likelihood (or penalised likelihood) using

variants of stochastic gradient descent (SGD) optimisation.
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DEEP LEARNING

Deep learning systems are neural network models similar to

those popular in the ’80s and ’90s, with:

◮ some architectural and algorithmic innovations (e.g. many

layers, ReLUs, dropout, LSTMs)

◮ vastly larger data sets (web-scale)

◮ vastly larger-scale compute resources (GPU, cloud)

◮ much better software tools (Theano, Torch, TensorFlow)

◮ vastly increased industry investment and media hype

figure from http://www.andreykurenkov.com/
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LIMITATIONS OF DEEP LEARNING

Neural networks and deep learning systems give amazing

performance on many benchmark tasks but they are generally:

◮ very data hungry (e.g. often millions of examples)

◮ very compute-intensive to train and deploy (cloud GPU

resources)

◮ poor at representing uncertainty

◮ easily fooled by adversarial examples

◮ finicky to optimise: non-convex + choice of architecture,

learning procedure, initialisation, etc, require expert

knowledge and experimentation

◮ uninterpretable black-boxes, lacking in trasparency,

difficult to trust
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Beyond deep learning
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MACHINE LEARNING AS

PROBABILISTIC MODELLING

◮ A model describes data that one could observe

from a system

◮ If we use the mathematics of probability

theory to express all forms of uncertainty and

noise associated with our model...

◮ ...then inverse probability (i.e. Bayes rule)

allows us to infer unknown quantities, adapt

our models, make predictions and learn from

data.
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BAYES RULE

P(hypothesis|data) =
P(hypothesis)P(data|hypothesis)∑

h P(h)P(data|h)

◮ Bayes rule tells us how to do inference

about hypotheses (uncertain quantities)

from data (measured quantities).

◮ Learning and prediction can be seen as

forms of inference.
Reverend Thomas Bayes (1702-1761)
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ONE SLIDE ON BAYESIAN MACHINE LEARNING

Everything follows from two simple rules:

Sum rule: P(x) =
∑

y P(x, y)

Product rule: P(x, y) = P(x)P(y|x)

Learning:

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)

P(D|θ,m) likelihood of parameters θ in model m

P(θ|m) prior probability of θ

P(θ|D,m) posterior of θ given data D

Prediction:

P(x|D,m) =

∫
P(x|θ,D,m)P(θ|D,m)dθ

Model Comparison:

P(m|D) =
P(D|m)P(m)

P(D)
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WHY SHOULD WE CARE?

Calibrated model and prediction uncertainty: getting

systems that know when they don’t know.

Automatic model complexity control and structure learning

(Bayesian Occam’s Razor)

Zoubin Ghahramani 22 / 53



WHAT DO I MEAN BY BEING BAYESIAN?

Let’s return to the example of neural networks / deep learning:

Dealing with all sources of parameter uncertainty

Also potentially dealing with structure uncertainty

inputs

outputs

x

y

weights

hidden

units

weights

Feedforward neural nets model p(y(n)|x(n),θ)

Parameters θ are weights of neural net.

Structure is the choice of architecture,

number of hidden units and layers, choice of

activation functions, etc.
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When do we need probabilities?
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WHEN IS THE PROBABILISTIC APPROACH

ESSENTIAL?

Many aspects of learning and intelligence depend crucially on

the careful probabilistic representation of uncertainty:

◮ Forecasting

◮ Decision making

◮ Learning from limited, noisy, and missing data

◮ Learning complex personalised models

◮ Data compression

◮ Automating scientific modelling, discovery, and

experiment design
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Automating model discovery:

The automatic statistician
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THE AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

Problem: Data are now ubiquitous; there is great value from

understanding this data, building models and making

predictions... however, there aren’t enough data scientists,

statisticians, and machine learning experts.
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THE AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

Problem: Data are now ubiquitous; there is great value from

understanding this data, building models and making

predictions... however, there aren’t enough data scientists,

statisticians, and machine learning experts.

Solution: Develop a system that automates model discovery

from data:

◮ processing data, searching over models, discovering a good

model, and explaining what has been discovered to the user.
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BACKGROUND: GAUSSIAN PROCESSES

Consider the problem of nonlinear regression: You want to

learn a function f with error bars from data D = {X, y}

x

y

A Gaussian process defines a distribution over functions p(f ) which

can be used for Bayesian regression:

p(f |D) =
p(f )p(D|f )

p(D)

Definition: p(f ) is a Gaussian process if for any finite subset

{x1, . . . , xn} ⊂ X , the marginal distribution over that subset p(f) is

multivariate Gaussian.

GPs can be used for regression, classification, ranking, dim. reduct...
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Automatic Statistician for Regression

and Time-Series Models
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THE ATOMS OF OUR LANGUAGE OF MODELS

Five base kernels

0 0

0

0 0

Squared

exp. (SE)

Periodic

(PER)

Linear

(LIN)

Constant

(C)

White

noise (WN)

Encoding for the following types of functions

Smooth

functions

Periodic

functions

Linear

functions

Constant

functions

Gaussian

noise
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THE COMPOSITION RULES OF OUR LANGUAGE

◮ Two main operations: addition, multiplication

0 0

LIN × LIN
quadratic

functions
SE × PER

locally

periodic

0

0

LIN + PER
periodic plus

linear trend
SE + PER

periodic plus

smooth trend
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MODEL SEARCH: MAUNA LOA KEELING CURVE
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EXAMPLE: AN ENTIRELY AUTOMATIC ANALYSIS

Raw data

1950 1952 1954 1956 1958 1960 1962

100

200

300

400

500

600

700

Full model posterior with extrapolations

1950 1952 1954 1956 1958 1960 1962

0

100

200

300

400

500

600

700

Four additive components have been identified in the data

◮ A linearly increasing function.

◮ An approximately periodic function with a period of 1.0 years and

with linearly increasing amplitude.

◮ A smooth function.

◮ Uncorrelated noise with linearly increasing standard deviation.
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GOOD PREDICTIVE PERFORMANCE AS WELL

Standardised RMSE over 13 data sets
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◮ Tweaks can be made to the algorithm to improve accuracy

or interpretability of models produced. . .

◮ . . . but both methods are highly competitive at extrapolation
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Automating Inference:

Probabilistic Programming
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation

of inference algorithms is time-consuming and error-prone.
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation

of inference algorithms is time-consuming and error-prone.

Solution:

◮ Develop Probabilistic Programming Languages for

expressing probabilistic models as computer programs that

generate data (i.e. simulators).

◮ Derive Universal Inference Engines for these languages

that do inference over program traces given observed data

(Bayes rule on computer programs).
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation

of inference algorithms is time-consuming and error-prone.

Solution:

◮ Develop Probabilistic Programming Languages for

expressing probabilistic models as computer programs that

generate data (i.e. simulators).

◮ Derive Universal Inference Engines for these languages

that do inference over program traces given observed data

(Bayes rule on computer programs).

Example languages: BUGS, Infer.NET, BLOG, STAN, Church,

Venture, Anglican, Probabilistic C, Stochastic Python*, Haskell*,

Turing*, ...

Example inference algorithms: Metropolis-Hastings, variational

inference, particle filtering, particle cascade, slice sampling*, particle

MCMC, nested particle inference*, austerity MCMC*
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Automating Optimisation:

Bayesian optimisation
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CONCLUSIONS

Probabilistic modelling offers a framework for building

systems that reason about uncertainty and learn from data,

going beyond traditional pattern recognition problems.

I have briefly reviewed some of the frontiers of our research,

centred around the theme of automating machine learning,

including:

◮ The automatic statistician

◮ Probabilistic programming

◮ Bayesian optimisation

Ghahramani, Z. (2015) Probabilistic machine learning and artificial

intelligence. Nature 521:452–459.

http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html
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BAYESIAN NEURAL NETWORKS AND GAUSSIAN

PROCESSES

inputs

outputs

x

y

weights

hidden

units

weights

Bayesian neural network

Data: D = {(x(n), y(n))}N
n=1 = (X, y)

Parameters θ are weights of neural net

prior p(θ|α)
posterior p(θ|α,D) ∝ p(y|X,θ)p(θ|α)
prediction p(y′|D, x′,α) =

∫
p(y′|x′,θ)p(θ|D,α) dθ

A neural network with one hidden layer, infinitely

many hidden units and Gaussian priors on the weights

→ a GP (Neal, 1994). He also analysed infinitely deep

networks. x

y
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MODEL CHECKING AND CRITICISM

◮ Good statistical modelling should include model criticism:

◮ Does the data match the assumptions of the model?

◮ Our automatic statistician does posterior predictive checks,

dependence tests and residual tests

◮ We have also been developing more systematic

nonparametric approaches to model criticism using kernel

two-sample testing:

→ Lloyd, J. R., and Ghahramani, Z. (2015) Statistical Model Criticism using

Kernel Two Sample Tests. NIPS 2015.
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BAYESIAN OPTIMISATION

Figure 4. Classification error of a 3-hidden-layer neural network

constrained to make predictions in under 2 ms.

(work with J.M. Hernández-Lobato, M.A. Gelbart, M.W. Hoffman, & R.P.

Adams) arXiv:1511.09422 arXiv:1511.07130 arXiv:1406.2541
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